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Abstract—In complex mountainous areas, global navigation
satellite system (GNSS) signals suffer severe degradation due
to multipath and non-line-of-sight propagation. Although un-
manned aerial vehicles, as part of Non-terrestrial Networks, can
enhance Internet of Things (IoT)-enabled emergency localization
through line-of-sight connectivity, current approaches often ne-
glect the influence of terrain on signal behavior in machine-type
communication scenarios. To address this, we propose a Terrain-
Driven Uplink Localization (TDUL) framework that integrates
a high-fidelity channel model based on digital elevation models
and ray tracing. By simulating 5G New Radio uplink, TDUL
extracts terrain features and multipath characteristics to train a
Terrain-Driven XGBoost (TD-XGBoost) model, which guides a
particle filter using a Student’s t-distribution for robust outlier
resistance. Simulation results show substantial performance gains
over baseline methods across diverse altitudes and ranges, with
cross-terrain evaluation demonstrating strong generalization.

Index Terms—Mountainous environments, unmanned aerial
vehicle (UAV), non-terrestrial networks, localization.

I. INTRODUCTION

In mountainous post-disaster scenarios, the critical golden-
72-hour rescue window requires rapid and reliable localiza-
tion—yet this is severely challenged by global navigation
satellite system (GNSS)-denied conditions induced by com-
plex terrain and dense vegetation. Unmanned aerial vehicles
(UAVs) offer a promising solution for Internet of Things (IoT)-
enabled emergency response, serving as highly mobile aerial
platforms capable of establishing line-of-sight (LoS) links [1].

Integrated localization and communication systems en-
able dual-functional UAV operation by concurrently providing
localization and communication services. [2], [3] established
a reliability framework and anti-jamming techniques using
a hybrid two-way ranging/time difference of arrival method,
whereas [4], [5] enhanced deployment strategies via geometric
analysis and age of information scheduling. A reconfigurable
intelligent surface-UAV fusion approach jointly optimizes tra-
jectory and phase to balance spectral efficiency with localiza-
tion accuracy [6]. Although deep learning methods such as
LocUNet [7] utilize radio maps for urban localization, their
generalization across varied terrains remains unexamined.

Trajectory optimization methods exploit UAV mobility
via intelligent path planning to improve localization accuracy
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in dynamic IoT environments. For example, Q-learning [8]
facilitates autonomous learning of optimal received signal
strength (RSS)-based trajectories. Likewise, [9] employed par-
ticle swarm optimization with map data for 3D trajectory
design, leveraging the Fisher information matrix to expedite
convergence. Further approaches include multi-stage trajec-
tory design utilizing iterative algorithms such as gradient
descent and convex approximation to achieve communication-
localization trade-offs [10], [11]. Dynamic tracking methods,
relying on radio maps and particle filtering, additionally ex-
hibit adaptability in time-varying IoT environments [12].

UAV deployment and resource allocation strategies opti-
mize static or dynamic UAV localization to maximize coverage
and accuracy for IoT connectivity. For example, [13], [14]
employed urban map data and linear-complexity algorithms for
occlusion-aware 3D deployment. Similarly, [15] established
mean squared error bounds and utilized genetic algorithms for
joint position and power optimization. Although these methods
typically integrate convex optimization or heuristic search to
manage non-convex constraints, their effectiveness is often
compromised by coverage blind spots and significant localiza-
tion accuracy degradation, especially under severe shadowing
from multipath occlusion.

However, existing methods often fail in mountainous IoT
deployment environments due to complex terrain causing non-
line-of-sight (NLoS) conditions, which systematically bias
the signal measurements used by conventional localization
techniques. To mitigate this issue, we propose a Terrain-Driven
Uplink Localization (TDUL) framework:

• A high-fidelity channel-simulation pipeline is developed,
integrating digital elevation model (DEM) with ray
tracing (RT) to generate physically grounded multipath
channel impulse responses (CIRs) within a 5G New
Radio (NR) orthogonal frequency division multiplexing
(OFDM) system.

• A Terrain-Driven XGBoost (TD-XGBoost) model is
trained to map terrain and geometric features to multipath
parameters, thereby capturing terrain–channel coupling
and providing calibrated prediction uncertainty.

• The learned mapping is incorporated into a robust
Bayesian localization algorithm: measurement residuals
are formed by a particle filter using the TD-XGBoost out-
puts, and those residuals are modeled with a Student’s t-
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Fig. 1. Terrain-Driven Uplink Localization (TDUL) framework

distribution to enhance robustness against outliers caused
by NLoS and anomalous multipath.

II. SYSTEM MODEL

As shown in Fig. 1, the proposed TDUL framework com-
prises four principal modules: CIR Data Generation with
RT, 5G-NR OFDM modulation/demodulation, TD-XGBoost
model and particle-filter localization. The first two modules
are described in this section, while the remaining two are
presented in Section III.

A. System Scenario

In mountainous environments, it is assumed that both the
user equipment (UE), which may be an IoT device or a
mobile device, and a UAV, acting as a non-terrestrial node,
are equipped with GNSS modules to acquire position data.
Nevertheless, the UE’s position is typically imprecise due to
terrain blockage, NLoS propagation, and unfavorable satel-
lite geometry in valleys. Accordingly, UE’s actual position
pu = [xu, yu, zu] is modeled as uniformly distributed within
a sphere centered at the estimated position p̂u = [x̂u, ŷu, ẑu]
with radius rerr. Thus, we define the uncertainty region Ψu for
the UE’s position as:

Ψu ≜
{
pu ∈ R1×3 | (pu − p̂u)(pu − p̂u)

T ≤ r2err

}
(1)

where rerr depends on GNSS localization accuracy under
terrain constraints. In contrast, the UAV, as part of an Non-
terrestrial Network-assisted IoT infrastructure, optimizes its
trajectory to maintain reliable GNSS reception, enabling it to
accurately determine its own position pa = [xa, ya, za] and
acquire 5G-NR uplink signals from the UE for subsequent
Machine-to-Machine (M2M) localization.

B. Wireless Multipath Channel Model

Electromagnetic wave propagation is jointly determined by
the Earth’s geometry, the propagation medium, and terrain.
For example, the Earth’s curvature and topography give rise
to phenomena such as spherical-Earth diffraction, multipath
interference, and obstacle diffraction. Because atmospheric
gases and water vapor add negligible attenuation at low
frequencies, this paper focuses primarily on the effects of
terrain variations.

The signal path loss approaches free-space values only
when the first Fresnel zone between transmitter and receiver is
unobstructed by terrain obstacles. In this paper, we model the
mountainous channel h(t) as a composite channel comprising
both large-scale and small-scale fading:

h(t) = β · d−α︸ ︷︷ ︸
Path Loss

· ξsh︸︷︷︸
Shadow Fading

·
K−1∑
k=0

γke
jϕkδ(t− τk)︸ ︷︷ ︸

Multipath Components

(2)

where β is a frequency-dependent constant representing path
loss at the reference distance (typically 1m), d is the propaga-
tion distance, α is the path loss exponent, ξsh ∼ LN (0, σ2

sh)
denotes lognormal shadow fading. K is the number of mul-
tipaths, and γk, ϕk, and τk are the gain, phase, and delay
of the k-th path, respectively. The model is generated by RT,
which explicitly accounts for terrain undulations, vegetation
blockage, and surface features.

C. CIR Data Generation with RT

DEM represents terrain topography by a discrete set of 3D
vectors {X,Y, Z}, where (X,Y ) are geodetic coordinates and
Z denotes elevation. We employ Shuttle Radar Topography
Mission data at a spatial resolution of 1 arc-second. RT
computes propagation loss, delay, and phase by simulating
radio-wave reflection, refraction, and diffraction phenomena.
The electric field at the receiver UAV position Pa is

E(Pa) =

I∑
i=1

Edir
i +

R∑
r=1

Eref
r +

D∑
d=1

Ediff
d (3)

where Edir
i , Eref

r , and Ediff
d denote the electric field components

for the direct, reflected, and diffracted paths, respectively. I , R,
and D denote the numbers of direct, reflected, and diffracted
rays, respectively.

The CIR represents the spatio-temporal channel response to
a Dirac delta excitation δ(t). The RT computes the discrete
multipath CIR for the target user and UAV as follows:

h(n) =

K∑
k=1

αke
jϕkδ(n− τk) (4)

where, for each path k, αk is the complex attenuation factor,
ϕk is the phase shift, and τk is the propagation delay. The path
gain is derived from the RT path loss Lk via

αk = 10−Lk/20 (5)

Unlike stochastic phase-modeling approaches, our imple-
mentation uses physically computed phase shifts ϕk from the
Ray Tracer toolbox. The phase term comprises contributions
from propagation delay and interaction-induced phase shifts:

ϕk = 2πfcτk︸ ︷︷ ︸
propagation

+

R∑
r=1

ϕref
r +

D∑
d=1

ϕdiff
d︸ ︷︷ ︸

interactions

(6)

where fc denotes the carrier frequency, ϕref
r and ϕdiff

d denote
the phase shifts caused by the r-th reflection and the d-th



diffraction, respectively, expressed in radians. These shifts
depend on the material properties of the reflecting surface and
the geometric characteristics of the diffraction edge.

D. 5G-NR Uplink Simulation

In practical mountainous localization systems, multipath
parameter estimation is sensitive to measurement noise and
sampling rate. To increase experimental realism, we generate
the multipath CIR and implement an OFDM-based channel
detector to acquire CIR measurements. An OFDM system with
N subcarriers and an inter-subcarrier spacing of ∆f has a
continuous-time OFDM signal that can be expressed as:

s(t) =
1√
N

N−1∑
k=0

S(k) · rect
(
t− NT

2

)
· ej2πfkt (7)

where S(k) denotes the quadrature phase shift keying (QPSK)
modulated symbol transmitted on the k-th subcarrier, fk =
k ·∆f is the kth subcarrier frequency, T is the symbol period,
and rect(t) is the rectangular window function defined as 1
on [0, T ] and 0 elsewhere.

x[n] =
1√
N

N−1∑
k=0

S[k]ej2πkn/N , 0 ≤ n ≤ N − 1 (8)

Signals propagate through multipath channels, and the re-
ceived signal can be expressed as:

y(t) =

K−1∑
k=0

αks(t− τk) + n(t) (9)

where αk and τk denote the complex gain and delay of the kth
path, respectively, K is the total number of paths, and n(t) is
additive white Gaussian noise satisfying n(t) ∼ CN (0, σ2

n).
We employ a comb-shaped pilot structure for channel esti-
mation. Pilot symbols are inserted in frequency every ∆k
subcarriers and in time every ∆l symbols. Denote the pilot-
position set by P . At the receiver, least squares channel
estimation is performed at pilot positions:

Ĥ[k, l] =
Yk[k, l]

Xk[k, l]
, (k, l) ∈ P (10)

where Yp[k, l] and Xp[k, l] are the received and transmitted
pilot symbols, respectively.

To obtain the channel frequency response (CFR) across all
subcarriers, we apply bilinear interpolation. For non-pilot po-
sitions (k, l), identify the four nearest pilots: (k1, l1), (k2, l1),
(k1, l2), and (k2, l2). The interpolated CFR is:

Ĥ[k, l] = (1− α)(1− β)Ĥ[k1, l1] + α(1− β)Ĥ[k2, l1]

+ (1− α)βĤ[k1, l2] + αβĤ[k2, l2]
(11)

where α = k−k1

k2−k1
and β = l−l1

l2−l1
.

Applying an IFFT to the CFR yields an estimate of the CIR:

ĥ[n] =
1

N

N−1∑
k=0

Ĥ[k]w[k]ej2πkn/N (12)

where w[k] is a Hann window used to reduce sidelobe effects
after inverse fast Fourier transform (IFFT). The estimated CIR
ĥ[n] is a discrete-time sequence encoding amplitude and delay
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Fig. 2. Validation of OFDM-based channel sounder consistency

information of the multipath channel. Multipath parameters
such as RSS denoted by Pr and root mean square delay spread
(RMS-DS) denoted by τRMS are extracted from ĥ[n]:

Pr = 10 log10

(∑
k

|αk|2
)

(13)

τRMS =

√√√√( K∑
k=1

pk(tk − µ)2

)/(
K∑

k=1

pk

)
(14)

where tk and pk = |hk|2 denote the arrival time and power of
the k-th path, µ is the power-weighted average arrival time.

The fidelity of the OFDM-based channel sounder was
validated by comparing the estimated multipath parameters
with RT-generated ground truth. Fig. 2(a) shows that the τRMS
estimates correlate with RT-generated values with correlations
up to 0.9957 across all UAV links and a maximum deviation
below 15ns, confirming the sounder’s accuracy in capturing
delay characteristics in this complex environment. Fig. 2(b)
shows similarly high consistency for the Pr estimates, with
correlations up to 0.9811. The close agreement for both param-
eters indicates that the implemented OFDM system provides
reliable channel measurements for subsequent localization.

III. TERRAIN-DRIVEN LOCALIZATION FRAMEWORK

A. TD-XGBoost Model

In mountainous environments, terrain strongly influences
signal characteristics. Localization that depends solely on
signal parameters may overlook propagation fading and pro-
duce localization errors. Elevation data supplied by DEMs
enables the derivation of environmental attributes such as
terrain roughness, LoS visibility, and scatter-point distribution.
These attributes can function as environmental fingerprints to
constrain and correct positioning models. Given the user’s
uncertainty region Ψu discretized into M rectangular grid cells
G = {Gi}Mi=1, we model signal propagation parameters as
functions of terrain features. For each grid cell Gi and UAV
position pa, we predict:{

Pr(pa, Gi) = fθr (Φ(pa, Gi))

τRMS(pa, Gi) = fθτ (Φ(pa, Gi))
(15)

where Φ(·) extracts terrain features from DEM, fθr and fθτ
are XGBoost models, parameterized by θr and θτ respectively.

The vector Φ(pa, Gi) combines geometric and terrain-
specific attributes:



• Geometric: Euclidean distance d and relative height h.
• Path: LoS/NLoS status (computed via Bresenham’s algo-

rithm), obstacle height hobs, and obstacle distance dobs.
• Terrain morphology: Average/maximum elevation, av-

erage/maximum slope, and terrain roughness σz

• Propagation: Free-space path loss LFS, Fresnel zone
radius rF , effective path length deff, and obstruction
severity ζ.

Among them, terrain roughness σz , free-space path loss
LFS, Fresnel zone radius rF , effective path length deff, and
obstruction severity ζ are derived features. ζ depends on
hobs and dobs, and deff depends on d and hobs. To account
for distinct propagation mechanisms, we train separate TD-
XGBoost models for LoS and NLoS conditions:

fθ(Φ(pa, Gi)) =

{
fLoS
θ (Φ(pa, Gi)) if I(Φ(pa, Gi)) = 1

fNLoS
θ (Φ(pa, Gi)) otherwise

(16)

where I is determined by terrain visibility analysis.
Each model is an ensemble of K regression trees:

fθ(Φ(pa, Gi)) =

K∑
k=1

fk(Φ(pa, Gi)), fk ∈ F (17)

where F = {f(x) = wq(x)} denotes the space of regression
trees with structure q and leaf weights w. The model is trained
by minimizing the following regularized objective:

L(θ) =
n∑

i=1

l(yi, ŷi) +

K∑
k=1

Ω(fk) (18)

Ω(f) = γT +
1

2
λ∥w∥2 (19)

where l(yi, ŷi) is a differentiable loss function and Ω(fk)
regularizes model complexity; specifically, Ω(f) = γT +
1
2λ∥w∥

2, where T is the number of leaves and γ, λ control
tree complexity and weight magnitude.

Performance is evaluated using the physical-scale root mean
square error (RMSE):

RMSE =

√√√√ 1

N

N∑
i=1

(g−1(ŷi)− g−1(yi))
2 (20)

where g−1 denotes the inverse transformation of Pr (dB
to linear scale) and τRMS, ensuring the error metric reflects
physical units rather than scaled values.

Fig. 3 compares the RMSE of feature parameter pre-
dictions between the TD-XGBoost and the Random Forest
(RF) model under various scenarios. The results demonstrate
that TD-XGBoost achieves superior performance in NLoS
environments, particularly for RMS-DS. Although both mod-
els exhibit comparable performance in RSS prediction, the
enhanced capability of TD-XGBoost in capturing complex
temporal dependencies makes it more suitable for practical
NLoS communication systems.

B. Particle-Filter Localization

To achieve robust localization in complex mountainous
environments, we propose a particle filter approach that inte-
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Algorithm 1: Particle Filter Localization
Input: DEM, p̂u, pa, TD-XGBoost model θ, maxIter
Output: Estimated position p̂′

u ∈ R1×3

1 Initialize Np particles with uniform distribution, positions
x0 ∈ RNp×3, weights w0 ∈ RNp×1

2 Initialize estimated user position: p̂′
u = wT

0 x0

3 for t = 1→ maxIter do
4 Update motion noise: noise = 25e−0.2t

5 Update particle positions: xt ← xt−1 + noise
6 Penalize out-of-bound particles:

w
(outidx)
t ← 10−20 ∗w(outidx)

t−1

7 for i = 1→ Np do
8 for a = 1→ Nu do
9 Compute path features Φ(pa,j ,x

(i)
t )

10 Predict P̂r, ˆτRMS ← fθ(Φ(pa,j ,x
(i)
t ))

11 Calculate errors ERSS, ERMS
12 Calculate RSS and RMS likelihood:

13 ℓ
(a)
Pr

=
Γ( ν+1

2 )
√
νπ·Γ( ν

2 )
·
(
1 + (ERSS/σ)2

ν

)− ν+1
2

14 ℓ
(a)
τRMS =

Γ( ν+1
2 )

√
νπ·Γ( ν

2 )
·
(
1 + (ERMS/σ)2

ν

)− ν+1
2

15 Update particle weight: w(i)
t ← w

(i)
t · ℓ

(a)
Pr
· ℓ(a)τRMS

16 end
17 end
18 Normalize weights: wt ← wt/

∑
w

(i)
t

19 Calculate effective sample size: EffSamp = 1∑
w

(i)
t

2

20 if EffSamp < 0.3Np then
21 Perform resampling
22 end
23 Calculate estimated position change:

posChange = wT
t xt − p̂u

24 Update estimated position: p̂u = wT
t xt

25 if posChange < Thresh & t > 5 then
26 break
27 end
28 end

grates the TD-XGBoost model, as shown in Algorithm 1. The
core innovation lies in utilizing TD-XGBoost-predicted signal
parameters as priors for the observation likelihood model while
employing a heavy-tailed Student’s t-distribution to model
observation errors, thereby effectively mitigating the impact of
outliers caused by NLoS propagation and multipath effects.

The algorithm approximates the posterior probability distri-
bution of the system state using a set of weighted random sam-
ples. We define the UE’s position state as xt = [ϕ, λ]T . Given
the time-series observations z1:t (Pr and τRMS) obtained from
UAVs, the algorithm employs Np particles {x(i)

t , w
(i)
t }Np

i=1

to approximate the posterior distribution p(xt|z1:t). The al-



TABLE I
LIST OF KEY SIMULATION PARAMETERS

Parameter Value
Surface Conductivity ϵc 0.003S/m
Relative Permittivity ϵr 17
Max. # of reflections R 3

Max. # of diffractions D 1
Frequency fk 1.5GHz

Transmit power Pt 30dBm
Subcarrier number N 960

Subcarrier spacing ∆f 15kHz
Cyclic prefix length Lcp 144

Sampling rate fn 30.72× 106

SNR 25

gorithm follows the recursive Bayesian filtering paradigm,
comprising two core steps:

• Prediction step:

p(xt|z1:t−1) =

∫
p(xt|xt−1)p(xt−1|z1:t−1)dxt−1

where p(xt|xt−1) denotes the state transition model.
• Update step:

p(xt|z1:t) = η−1
t p(zt|xt)p(xt|z1:t−1)

where ηt normalizes the posterior.

The key innovation is a terrain-adaptive observation-
likelihood model. For each particle x

(i)
t , the likelihood of

observing zt—Pr and τRMS from UAV—is computed as:

p(zt|x(i)
t ) =

NU∏
a=1

ℓ
(a)
Pr

ℓ(a)τRMS
(21)

where NU is the number of all positions where a UAV has
stopped, and for each position a:

ℓ
(a)
Pr

= T
(
∆P (a)

r ;σPr , νPr

)
(22)

ℓ(a)τRMS
= T

(
∆τ (a);στ , ντ

)
(23)

The terms are defined as follows:

• ∆P
(a)
r = P̂r

(a)
− Pr

(a): residual between measured and
predicted Pr for position a.

• ∆τ (a) = ˆτRMS
(a) − τRMS

(a): residual between measured
and predicted τRMS for position a.

• T (x;σ, ν): Student’s t-distribution evaluated at x with
scale parameter σ and degrees of freedom ν.

• σPr
, στ : scale parameters for ∆P

(a)
r and ∆τ (a).

• νRSS, ντ : degrees-of-freedom parameters controlling tail
heaviness.

The predicted values P̂r
(a)

and ˆτRMS
(a) are obtained from

the TD-XGBoost model in Section III-A, conditioned on the
particle position x

(i)
t and UAV position pa. Using Student’s t-

distribution instead of the Gaussian for the likelihood increases
robustness to outliers. Its heavier tails better accommodate
non-Gaussian errors common in mountainous environments
from multipath effects and NLoS conditions.
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Fig. 4. Impact of UAV-UE horizontal projection distance and number of LoS
links on localization errors

IV. PERFORMANCE EVALUATION

A. System Setup and Benchmark Methods

The UE and the UAV are located at altitudes of 1.5m and
50m, respectively, above the mountainous terrain. Detailed
RT parameters and OFDM system configurations are given
in Table I. To validate the proposed TDUL framework’s per-
formance in complex mountainous environments, we bench-
marked it against the following methods:

• WLS: RSS-based localization using weighted least
squares.

• TF-XGBoost: Terrain-Free XGBoost trained on basic
geometric features (distance, relative height) and signal
measurements, excluding terrain-specific attributes.

• TDRF: Terrain-Driven localization using RF model.

B. Localization Performance

Fig. 4 illustrates the localization errors of four methods
under varying numbers of LoS links in mountainous envi-
ronment. TDUL outperforms all baselines. With only four
LoS links, TDUL attains a minimum error of 52.51m. This
corresponds to reductions of 262.09m, 84.74m, and 41.09m
relative to WLS, TF-XGBoost, and TDRF, respectively.

Furthermore, TF-XGBoost shows degraded localization per-
formance as the number of LoS links increases (from 137.25 m
to 179.52 m). This deterioration arises because TF-XGBoost
neglects the influence of mountainous terrain. As LoS links
increase, the model persistently produces overly optimistic
RSS predictions, introducing systematic errors that undermine
the particle filter’s weight update. Therefore, in complex
terrain, simply increasing the number of links is not enough;
terrain-specific attributes must also be taken into consideration.

C. Generalization Ability

To evaluate the generalization capability of the proposed
localization framework, the model trained exclusively on val-
ley terrain was deployed on two previously unseen terrains: a
valley as shown in Fig. 5(a) and a ridge as shown in Fig. 5(c).
The experimental configuration remained identical for both
deployments. Fig. 5(b) and Fig. 5(d) illustrate the roughness of
the valley and ridge terrains, alongside the particle distribution
and weights employed in the filtering algorithm. Specifically,
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(c) RT results in ridge terrain
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(d) Localization result (error = 49.04m) in ridge terrain

Fig. 5. Generalization performance analysis (valley & ridge terrains)

the measured localization errors are 38.74m in valley terrain
and 49.04m in ridge terrain. These results across markedly
different mountainous topographies indicate the framework’s
robust adaptability and strong generalization for localization
in diverse mountainous environments.

V. CONCLUSION AND FUTURE WORK

The TDUL framework proposed in this paper is designed
for UAV-assisted IoT localization in remote mountainous envi-
ronments. It systematically integrates RT-based physical prop-
agation modeling, realistic communication system simulation,
machine-learning prediction, and Bayesian filtering. Future
work includes validating the model with field measurements
in realistic IoT deployments and extending the framework to
dynamic M2M tracking scenarios.
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